国产精品免费无遮挡无码永久视频-国产高潮视频在线观看-精品久久国产字幕高潮-国产精品99精品无码视亚

AMEYA360報道:不同硬件的成本對比 ChatGPT炒熱GPU

發布時間:2023-2-22 14:54    發布者:Ameya360
  在機器學習推理場景中,除了GPU外,還有一大通用AI硬件適合這一負載,那就是FPGA。與GPU一樣,在技術和算法還未成熟且仍在打磨階段時,可以隨時重新編程改變芯片功能的FPGA架構前期硬件成本顯著低于GPU。在推理性能上,現如今的FPGA加速卡算力遠超CPU,甚至高過不少GPU產品。
  而且在ChatGPT這樣的聊天機器人應用上,將FPGA用于推理得以發揮其最大的優勢,那就是高吞吐量和低時延。更高的吞吐量和更低的時延也就意味著更大的并發,對ChatGPT這種應用來說可以極大增強其響應速度。

  但隨著算法和模型逐漸成熟,FPGA在成本上的優勢就慢慢不存在了,在大語言模型上需要用到更多的硬件,而FPGA量產規模的單價成本還是太高了,一旦擴充至成千上萬張加速卡,其成本也是不小的。比如AMD推出的新加速卡Alveo V70,據傳單卡價格就在2000美元左右。如果我們以INT8精度來衡量算力的話,假設ChatGPT需要28936塊A100 GPU,那么改用Alveo V70的話,也需要44693塊加速卡。

  所以還是有不少人將目光投向了量產規模成本更低的ASIC,比如谷歌就選擇用自研的TPU來部署其聊天機器人Bard。ASIC方案在單芯片算力上或許不是最高的,但計算效率卻是最高的,而且隨著量產化單片成本會逐漸降低。比如谷歌的單個TPU v4 Pod就集成了4096個TPU v4芯片,單芯片的BF16算力達到275TFLOPS,已經相當接近A100單卡峰值算力了。如果只是這樣簡單換算的話,只需幾個TPU v4 Pod,就能滿足與ChatGPT同量級的應用了。

  不過ASIC方案并沒有我們想象得那么美好,首先這類硬件的前期設計成本較大,要想投入數據中心商用,必須組建強大的硬件設計和軟件開發團隊,這樣才能有與GPU相抗衡的性能。其次,因為本身專用硬件的特性,專用于機器學習推理的ASIC方案很難最大化數據中心的硬件利用率,不像GPU還可以同時用于訓練、視頻編解碼等等。

本文地址:http://m.4huy16.com/thread-811219-1-1.html     【打印本頁】

本站部分文章為轉載或網友發布,目的在于傳遞和分享信息,并不代表本網贊同其觀點和對其真實性負責;文章版權歸原作者及原出處所有,如涉及作品內容、版權和其它問題,我們將根據著作權人的要求,第一時間更正或刪除。
您需要登錄后才可以發表評論 登錄 | 立即注冊

廠商推薦

  • Microchip視頻專區
  • Microchip第22屆中國技術精英年會——采訪篇
  • Microchip第22屆中國技術精英年會上海首站開幕
  • 電動兩輪車設計生態系統
  • “芯”光璀璨,鵬城共賞——2025 Microchip中國技術精英年會深圳站回顧
  • 貿澤電子(Mouser)專區
關于我們  -  服務條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯系我們
電子工程網 © 版權所有   京ICP備16069177號 | 京公網安備11010502021702
快速回復 返回頂部 返回列表