|
作者:Thomas Neu, 德州儀器 (TI) 系統(tǒng)兼應(yīng)用工程師 新型的高速 ADC 都具備高模擬輸入帶寬(約為最大采樣頻率的 3 到 6 倍),因此它們可以用于許多欠采樣應(yīng)用中。ADC 設(shè)計(jì)的最新進(jìn)展極大地?cái)U(kuò)展了可用輸入范圍,這樣系統(tǒng)設(shè)計(jì)人員便可以去掉至少一個(gè)中間頻率級(jí),從而降低成本和功耗。在欠采樣接收機(jī)設(shè)計(jì)中必須要特別注意采樣時(shí)鐘,因?yàn)樵谝恍└咻斎腩l率下時(shí)鐘抖動(dòng)會(huì)成為限制信噪比 (SNR) 的主要原因。 本系列文章共有三部分,“第 1 部分”重點(diǎn)介紹如何準(zhǔn)確地估算某個(gè)時(shí)鐘源的抖動(dòng),以及如何將其與 ADC 的孔徑抖動(dòng)組合。在“第 2 部分”中,該組合抖動(dòng)將用于計(jì)算 ADC 的 SRN,然后將其與實(shí)際測(cè)量結(jié)果對(duì)比。“第 3 部分”將介紹如何通過(guò)改善 ADC 的孔徑抖動(dòng)來(lái)進(jìn)一步增加 ADC 的 SNR,并會(huì)重點(diǎn)介紹時(shí)鐘信號(hào)轉(zhuǎn)換速率的優(yōu)化。 第 1 部分 重點(diǎn)介紹如何準(zhǔn)確地估算某個(gè)時(shí)鐘源的抖動(dòng),以及如何將其與 ADC 的孔徑抖動(dòng)組合(如下) 采樣過(guò)程回顧 根據(jù) Nyquist-Shannon 采樣定理,如果以至少兩倍于其最大頻率的速率來(lái)對(duì)原始輸入信號(hào)采樣,則其可以得到完全重建。假設(shè)以 100 MSPS 的速率對(duì)高達(dá) 10MHz 的輸入信號(hào)采樣,則不管該信號(hào)是位于 1 到 10MHz 的基帶(首個(gè)Nyquist 區(qū)域),還是在 100 到 110MHz 的更高 Nyquist 區(qū)域內(nèi)欠采樣,都沒關(guān)系(請(qǐng)參見圖 1)。在更高(第二個(gè)、第三個(gè)等)Nyquist 區(qū)域中采樣,一般被稱作欠采樣或次采樣。然而,在 ADC 前面要求使用抗混疊過(guò)濾,以對(duì)理想 Nyquist 區(qū)域采樣,同時(shí)避免重建原始信號(hào)過(guò)程中產(chǎn)生干擾。 圖 1 100MSPS 采樣的兩個(gè)輸入信號(hào)顯示了混疊帶來(lái)的相同采樣點(diǎn)
時(shí)域抖動(dòng) 仔細(xì)觀察某個(gè)采樣點(diǎn),可以看到計(jì)時(shí)不準(zhǔn)(時(shí)鐘抖動(dòng)或時(shí)鐘相位噪聲)是如何形成振幅變化的。由于高 Nyquist 區(qū)域(例如,f1 = 10 MHz 到 f2 = 110 MHz)欠采樣帶來(lái)輸入頻率的增加,固定數(shù)量的時(shí)鐘抖動(dòng)自理想采樣點(diǎn)產(chǎn)生更大數(shù)量的振幅偏差(噪聲)。另外,圖 2 表明時(shí)鐘信號(hào)自身轉(zhuǎn)換速率對(duì)采樣時(shí)間的變化產(chǎn)生了影響。轉(zhuǎn)換速率決定了時(shí)鐘信號(hào)通過(guò)零交叉點(diǎn)的快慢。換句話說(shuō),轉(zhuǎn)換速率直接影響 ADC 中時(shí)鐘電路的觸發(fā)閾值。 圖 2 時(shí)鐘抖動(dòng)形成更多快速輸入信號(hào)振幅誤差
如果 ADC 的內(nèi)部時(shí)鐘緩沖器上存在固定數(shù)量的熱噪聲,則轉(zhuǎn)換速率也轉(zhuǎn)換為計(jì)時(shí)不準(zhǔn),從而降低了 ADC 的固有窗口抖動(dòng)。如圖 3 所示,窗口抖動(dòng)與時(shí)鐘抖動(dòng)(相位噪聲)沒有一點(diǎn)關(guān)系,但是這兩種抖動(dòng)分量在采樣時(shí)間組合在一起。圖 3 還表明窗口抖動(dòng)隨轉(zhuǎn)換速率降低而增加。轉(zhuǎn)換速率一般直接取決于時(shí)鐘振幅。
時(shí)鐘抖動(dòng)導(dǎo)致的 SNR 減弱 有幾個(gè)因素會(huì)限制 ADC 的 SNR,例如:量化噪聲(管線式轉(zhuǎn)換器中一般不明顯)、熱噪聲(其在低輸入頻率下限制 SNR),以及時(shí)鐘抖動(dòng)(SNRJitter)(請(qǐng)參見下面方程式 1)。SNRJitter 部分受到輸入頻率 fIN(取決于 Nyquist 區(qū)域)的限制,同時(shí)受總時(shí)鐘抖動(dòng)量 tJitter 的限制,其計(jì)算方法如下:
SNRJitter[dBc]=-20×log(2π×fIN×tJitter)(2) 正如我們預(yù)計(jì)的那樣,利用固定數(shù)量的時(shí)鐘抖動(dòng),SNR 隨輸入頻率上升而下降。圖 4 描述了這種現(xiàn)象,其顯示了 400 fs 固定時(shí)鐘抖動(dòng)時(shí)一個(gè) 14 位管線式轉(zhuǎn)換器的 SNR。如果輸入頻率增加十倍,例如:從 10MHz 增加到 100MHz,則時(shí)鐘抖動(dòng)帶來(lái)的最大實(shí)際 SNR 降低 20dB。
如前所述,限制 ADC SNR 的另一個(gè)主要因素是 ADC 的熱噪聲,其不隨輸入頻率變化。一個(gè) 14 位管線式轉(zhuǎn)換器一般有 ~70 到 74 dB 的熱噪聲,如圖 4 所示。我們可以在產(chǎn)品說(shuō)明書中找到 ADC 的熱噪聲,其相當(dāng)于最低指定輸入頻率(本例中為 10MHz)的 SNR,其中時(shí)鐘抖動(dòng)還不是一個(gè)因素。 讓我們來(lái)對(duì)一個(gè)具有 400 fs 抖動(dòng)時(shí)鐘電路和 ~73 dB 熱噪聲的 14 位 ADC 進(jìn)行分析。低輸入頻率(例如:10MHz 等)下,該 ADC 的 SNR 主要由其熱噪聲定義。由于輸入頻率增加,400-fs 時(shí)鐘抖動(dòng)越來(lái)越占據(jù)主導(dǎo),直到 ~300 MHz 時(shí)完全接管。盡管相比 10MHz 的 SNR,100MHz 輸入頻率下時(shí)鐘抖動(dòng)帶來(lái)的 SNR 每十倍頻降低 20dB,但是總 SNR 僅降低 ~3.5 dB(降至 69.5dB),因?yàn)榇嬖?73-dB 熱噪聲(請(qǐng)參見圖 5):
現(xiàn)在,很明顯,如果 ADC 的熱噪聲增加,對(duì)高輸入頻率采樣時(shí)時(shí)鐘抖動(dòng)便非常重要。例如,一個(gè) 16 位 ADC 具有 ~77 到 80 dB 的熱噪聲層。根據(jù)圖 4 所示曲線圖,為了最小化 100MHz 輸入頻率 SNR 的時(shí)鐘抖動(dòng)影響,時(shí)鐘抖動(dòng)需為大約 150 fs 或更高。 確定采樣時(shí)鐘抖動(dòng) 如前所述,采樣時(shí)鐘抖動(dòng)由時(shí)鐘的計(jì)時(shí)不準(zhǔn)(相位噪聲)和 ADC 的窗口抖動(dòng)組成。這兩個(gè)部分結(jié)合組成如下:
我們?cè)诋a(chǎn)品說(shuō)明書中可以找到 ADC 的孔徑口抖動(dòng) (aperture jitter)。這一值一般與時(shí)鐘振幅或轉(zhuǎn)換速率一起指定,記住這一點(diǎn)很重要。低時(shí)鐘振幅帶來(lái)低轉(zhuǎn)換速率,從而增加窗口抖動(dòng)。 時(shí)鐘輸入抖動(dòng) 時(shí)鐘鏈(振蕩器、時(shí)鐘緩沖器或 PLL)中器件的輸出抖動(dòng)一般規(guī)定在某個(gè)頻率范圍內(nèi),該頻率通常偏離于基本時(shí)鐘頻率 10 kHz 到 20 MHz(單位也可以是微微秒或者繪制成相位噪聲圖),可以將其整合到一起獲取抖動(dòng)信息。但是,低端的 10kHz 和高端的 20MHz 有時(shí)并非正確的使用邊界,因?yàn)樗鼈冋{(diào)試依賴于其他系統(tǒng)參數(shù),我們將在后面進(jìn)行詳細(xì)介紹。圖 6 描述了設(shè)置正確整合限制的重要性,圖中的相位噪聲圖以其每十倍頻抖動(dòng)內(nèi)容覆蓋。我們可以看到,如果將下限設(shè)定為 100-Hz 或 10kHz 偏移,則產(chǎn)生的抖動(dòng)便極為不同。同樣地,例如,設(shè)置上整合限制為 10 或 20MHz,可得到相比 100MHz 設(shè)置極為不同的結(jié)果。 圖 5 產(chǎn)生的 ADC SNR 受熱噪聲和時(shí)鐘抖動(dòng)的限制
圖 6 每十倍頻計(jì)算得到的時(shí)鐘相位噪聲抖動(dòng)影響
確定正確的整合下限 在采樣過(guò)程中,輸入信號(hào)與采樣時(shí)鐘信號(hào)混頻在一起,包括其相位噪聲。當(dāng)進(jìn)行輸入信號(hào) FFT 分析時(shí),主 FFT 容器 (bin) 集中于輸入信號(hào)。采樣信號(hào)周圍的相位噪聲(來(lái)自時(shí)鐘或輸入信號(hào))決定了鄰近主容器的一些容器的振幅,如圖 7 所示。因此,小于 1/2 容器尺寸的偏頻的所有相位噪聲都集中于輸入信號(hào)容器中,且未增加噪聲。因此,相位噪聲整合帶寬下限應(yīng)設(shè)定為 1/2 FFT 容器尺寸。 FFT 容器尺寸計(jì)算方法如下:
為了進(jìn)一步描述該點(diǎn),我們利用兩個(gè)不同的FFT尺寸—131,072 和 1,048,576 點(diǎn),使用 ADS54RF63 進(jìn)行實(shí)驗(yàn)。采樣速率設(shè)定為 122.88MSPS,而圖 8 則顯示了時(shí)鐘相位噪聲。我們將一個(gè) 6-MHz、寬帶通濾波器添加到時(shí)鐘輸入,以限制影響抖動(dòng)的寬帶噪聲數(shù)量。選擇 1-GHz 輸入信號(hào)的目的是確保 SNR 減弱僅由于時(shí)鐘抖動(dòng)。圖 8 表明兩個(gè) FFT 尺寸的 1/2 容器尺寸到 40MHz 相位噪聲整合抖動(dòng)結(jié)果都極為不同,而“表 1”的 SNR 測(cè)量情況也反映這種現(xiàn)象。 圖 7 近區(qū)相位噪聲決定主容器附近 FFT 容器的振幅
設(shè)置正確的整合上限 圖 6 所示相位噪聲圖抖動(dòng)貢獻(xiàn)量為 ~360 fs,其頻率偏移為 10 到 100MHz 之間。這比 100Hz 到 10MHz 之間偏移的所有 ~194 fs 抖動(dòng)貢獻(xiàn)值要大得多。因此,所選整合上限可極大地影響計(jì)算得到的時(shí)鐘抖動(dòng),以及預(yù)計(jì)SNR匹配實(shí)際測(cè)量的好壞程度。 要確定正確的限制,您必須記住采樣過(guò)程中非常重要的事情是:來(lái)自其他尼奎斯特區(qū)域的時(shí)鐘信號(hào)偽帶內(nèi)噪聲和雜散,正如其出現(xiàn)在輸入信號(hào)時(shí)表現(xiàn)的那樣。因此,如果時(shí)鐘輸入的相位噪聲不受頻帶限制,同時(shí)沒有高頻規(guī)律性衰減,則整合上限由變壓器(如果使用的話)帶寬和 ADC 自身的時(shí)鐘輸入設(shè)定。一些情況下,時(shí)鐘輸入帶寬可以非常大;例如,ADS54RF63 具有 ~2 GHz 的時(shí)鐘輸入帶寬,旨在允許高時(shí)鐘轉(zhuǎn)換速率的高階諧波。 若想要驗(yàn)證時(shí)鐘相位噪聲是否需要整合至?xí)r鐘輸入帶寬,則需建立另一個(gè)實(shí)驗(yàn)。ADS54RF63 再次工作在 122.88 MSPS,其輸入信號(hào)為 1GHz,以確保 SNR 抖動(dòng)得到控制。我們利用一個(gè) RF 放大器,生成 50MHz 到 1GHz 的寬帶白噪聲,并將其添加至采樣時(shí)鐘,如圖 9 所示。之后,我們使用幾個(gè)不同低通濾波器 (LPF) 來(lái)限制添加至?xí)r鐘信號(hào)的噪聲量。 ADS54RF63 的時(shí)鐘輸入帶寬為 ~2 GHz,但由于 RF 放大器和變壓器都具有 ~1 GHz 的 3-dB帶寬,因此有效 3-dB 時(shí)鐘輸入帶寬被降低至 ~500 MHz。“表 2”所示測(cè)得 SNR 結(jié)果證實(shí),就本裝置而言,實(shí)際時(shí)鐘輸入帶寬約為 500MHz。圖 10 所示 FFT 對(duì)比圖進(jìn)一步證實(shí)了 RF 放大器的寬帶噪聲限制了噪聲層,并降低了 SNR。 該實(shí)驗(yàn)表明,時(shí)鐘相位噪聲必需非常低或者帶寬有限,較為理想的情況是通過(guò)一個(gè)很窄的帶通濾波器。否則,由系統(tǒng)時(shí)鐘帶寬設(shè)定的整合上限會(huì)極大降低 ADC 的 SNR。
結(jié)論 本文介紹了如何準(zhǔn)確地估算采樣時(shí)鐘抖動(dòng),以及如何計(jì)算正確的上下整合邊界。 第 2 部分 介紹如何使用這種估算方法來(lái)推導(dǎo) ADC 的 SNR,以及所得結(jié)果與實(shí)際測(cè)量結(jié)果的對(duì)比情況(如下) 濾波采樣時(shí)鐘測(cè)量 我們做了一個(gè)試驗(yàn),目的是檢查測(cè)得時(shí)鐘相位噪聲與提取自 ADC 測(cè)得 SNR 的時(shí)鐘抖動(dòng)的匹配程度。如圖 11 所示,一個(gè)使用 Toyocom 491.52-MHz VCXO 的 TI CDCE72010 用于產(chǎn)生 122.88-MHz 采樣時(shí)鐘,同時(shí)我們利用 Agilent 的 E5052A 來(lái)對(duì)濾波相位噪聲輸出進(jìn)行測(cè)量。利用一個(gè) SNR 主要受限于采樣時(shí)鐘抖動(dòng)的輸入頻率對(duì)兩種不同的 TI 數(shù)據(jù)轉(zhuǎn)換器(ADS54RF63 和 ADS5483)進(jìn)行評(píng)估。快速傅里葉變換 (FFT) 的大小為 131000 點(diǎn)。 圖 11 濾波后時(shí)鐘相關(guān)性測(cè)試裝置結(jié)構(gòu)
圖 12 所示曲線圖描述了濾波后 CDCE72010 LVCMOS 輸出的測(cè)得輸出相位噪聲。131000 點(diǎn)的 FFT 大小將低積分帶寬設(shè)定為 ~500 Hz。積分上限由帶通濾波器設(shè)定,其影響在相位噪聲曲線圖中清晰可見。超出曲線圖所示帶通濾波器限制的相位噪聲為 E5052A 的噪聲底限,不應(yīng)包括在抖動(dòng)計(jì)算中。濾波后相位噪聲輸出的積分帶來(lái) ~90 fs 的時(shí)鐘抖動(dòng)。 圖 12 濾波后時(shí)鐘的測(cè)得相位噪聲
接下來(lái),我們建立起了熱噪聲基線。我們直接從 ~35 fs 抖動(dòng)的時(shí)鐘源生成器使用濾波后采樣時(shí)鐘對(duì)兩種 ADC 采樣,而 CDCE72010 被繞過(guò)了。將輸入頻率設(shè)定為 10 MHz,預(yù)計(jì)對(duì)時(shí)鐘抖動(dòng) SNR 無(wú)影響。然后,通過(guò)增加輸入頻率至 SNR 主要為抖動(dòng)限制的頻率,確定每個(gè) ADC 的孔徑抖動(dòng)。由于采樣時(shí)鐘抖動(dòng)遠(yuǎn)低于估計(jì) ADC 孔徑抖動(dòng),因此計(jì)算應(yīng)該非常準(zhǔn)確。另外還需注意,時(shí)鐘源的輸出振幅應(yīng)會(huì)增加(但沒有多到超出 ADC 的最大額定值),從而升高時(shí)鐘信號(hào)的轉(zhuǎn)換率,直到 SNR 穩(wěn)定下來(lái)為止。 我們知道時(shí)鐘源生成器濾波后輸出的外部時(shí)鐘抖動(dòng)為 ~35 fs,因此我們可以利用測(cè)得的 SNR 結(jié)果,然后對(duì)第 1 部分(請(qǐng)參見參考文獻(xiàn) 1)中的方程式 1、2 和 3 求解孔徑抖動(dòng)值,從而計(jì)算得到 ADC 孔徑抖動(dòng),請(qǐng)參見下面的方程式 4。表 3 列舉了每種 ADC 測(cè)得的 SNR 結(jié)果以及計(jì)算得孔徑抖動(dòng)。 表 3 測(cè)得的 SNR 和計(jì)算得抖動(dòng)
利用 ADC 孔徑抖動(dòng)和 CDCE72010 的采樣時(shí)鐘抖動(dòng),可以計(jì)算出 ADC 的SNR,并與實(shí)際測(cè)量結(jié)果對(duì)比。使用 ADC 孔徑抖動(dòng)可以通過(guò)測(cè)得 SNR 值計(jì)算出 CDCE72010 的采樣時(shí)鐘抖動(dòng),如表 4 所列。乍一看,預(yù)計(jì) SNR 值有些接近測(cè)得值。但是,將兩種 ADC 計(jì)算得出的采樣時(shí)鐘抖動(dòng)與 90 fs 測(cè)得值對(duì)比時(shí),出現(xiàn)另一幅不同的場(chǎng)景,其有相當(dāng)多的不匹配。 不匹配的原因是,計(jì)算得出的孔徑抖動(dòng)是基于時(shí)鐘源生成器的快速轉(zhuǎn)換速率。CDCE72010 的 LVCMOS 輸出消除了時(shí)鐘信號(hào)的高階諧波,其有助于形成快速升降沿。圖 13 所示波形圖表明了帶通濾波器急劇降低未濾波 LVCMOS 輸出轉(zhuǎn)換速率,以及將方波轉(zhuǎn)換為正弦波的過(guò)程。 圖 13 時(shí)鐘抖動(dòng)對(duì)采樣時(shí)鐘轉(zhuǎn)換速率的影響
表 4 90-fs 時(shí)鐘抖動(dòng)的 SNR 結(jié)果
改善轉(zhuǎn)換速率的一種方法是:在 CDCE72010 的 LVCMOS 輸出和帶通濾波器之間添加一個(gè)具有相當(dāng)量增益的低噪聲 RF 放大器,參見圖 14。該放大器應(yīng)該放置于濾波器前面,這樣便可以將其對(duì)時(shí)鐘信號(hào)的噪聲影響程度限定在濾波器帶寬,而非 ADC 的時(shí)鐘輸入帶寬。由于下一個(gè)試驗(yàn)的放大器具有 21 dB 的增益,因此我們?cè)趲V波器后面增加了一個(gè)可變衰減器,旨在匹配濾波后 LVCMOS 信號(hào)到時(shí)鐘生成器濾波后輸出的轉(zhuǎn)換速率。該衰減器可防止 ADC 的時(shí)鐘輸入超出最大額定值。 圖 14 帶通濾波器前面添加 RF 放大器來(lái)降低轉(zhuǎn)換速率
通過(guò)在時(shí)鐘輸入通路中安裝低噪聲 RF 放大器,兩個(gè)數(shù)據(jù)轉(zhuǎn)換器重復(fù)進(jìn)行了高輸入頻率的 SNR 測(cè)量,其結(jié)果如表 5 所示。我們可以看到,測(cè)得 SNR 和預(yù)計(jì) SNR 匹配的非常好。使用下面的方程式 5,計(jì)算得到的時(shí)鐘抖動(dòng)值在 90-fs 時(shí)鐘抖動(dòng)的 5 fs 以內(nèi),其結(jié)果通過(guò)相位噪聲測(cè)得推導(dǎo)得出。 表 5 90-fs 時(shí)鐘抖動(dòng)和 RF 放大器的 SNR 結(jié)果
未濾波采樣時(shí)鐘試驗(yàn) 為了強(qiáng)調(diào)濾波采樣時(shí)鐘的重要性,在下一個(gè)試驗(yàn)中,我們將時(shí)鐘帶通濾波器從 CDCE72010 輸出端去除。在圖 15 所示結(jié)構(gòu)中,我們使用了 E5052A 相位噪聲分析儀來(lái)捕獲時(shí)鐘相位噪聲。但是不幸的是,該分析儀對(duì)相位噪聲的測(cè)量?jī)H達(dá)到 40-MHz 載波頻率偏移,并且在這點(diǎn)以外沒有給出任何相位噪聲特性的相關(guān)信息。 圖 15 未濾波采樣時(shí)鐘輸入的測(cè)試裝置結(jié)構(gòu)
要設(shè)定使用未濾波時(shí)鐘時(shí)的正確積分上限,我們必須再一次復(fù)習(xí)一下采樣理論。CDCE72010 的未濾波時(shí)鐘輸出看起來(lái)像一種具有快速升降沿的方波,而其升降沿由時(shí)鐘頻率的基頻正弦波高階諧波引起。這些諧波的振幅比基頻低,且其振幅隨諧波階增加而下降。 在采樣時(shí)間,基頻正弦波及高階諧波與輸入信號(hào)混頻,如圖 16 所示。(為了簡(jiǎn)單起見,僅顯示了一個(gè)諧波。)因此,三階諧波周圍的相位噪聲與輸入信號(hào)混頻,而第三諧波也形成一個(gè)混頻結(jié)果。但是,由于時(shí)鐘信號(hào)的第三諧波的振幅更低,因此該混頻結(jié)果的振幅也被降低。 圖 16 采樣時(shí)間時(shí)鐘基頻及其諧波與輸入信號(hào)混頻
兩個(gè)采樣信號(hào)組合在一起時(shí),我們可以看到,一旦振幅差異超出 ~3 dB 時(shí),由第三諧波引起的總相位噪聲減弱為最小。由于基頻和第三諧波之間的交叉點(diǎn)為 2 × fs,將寬帶相位噪聲積分至 2 × fs 可以得到相當(dāng)準(zhǔn)確的結(jié)果。 如后面圖 19 所示,CDCE72010 的未濾波 LVCMOS 輸出相位噪聲在 –153 dBc/Hz 附近穩(wěn)定,其始于 ~10 MHz 偏移頻率,原因可能是 LVCMOS 輸出緩沖器的熱噪聲。ADS54RF63 EVM 具有 ~1 GHz(受限于變壓器)的時(shí)鐘輸入帶寬;因此理論上而言,應(yīng)該可以對(duì)相位噪聲求積分為 ~1GHz(在900-MHz 偏移頻率的 3dB 時(shí)下降)。這會(huì)帶來(lái) ~1.27 ps 的采樣時(shí)鐘抖動(dòng),并將 fIN = 1GHz 的 SNR 降至 ~42.8 dBFS! 圖 17 低通濾波器前面添加RF放大器來(lái)降低轉(zhuǎn)換速率
圖 18 不同低通濾波器限制相位噪聲
圖 19 外推 (extrapolate) 123-MHz 偏移頻率的未濾波相位噪聲
實(shí)際 SNR 測(cè)量結(jié)果比表 6 所列要好不少。對(duì)比實(shí)際測(cè)量結(jié)果,計(jì)算得時(shí)鐘抖動(dòng)和 SNR 之間存在巨大的差異。這表明,LVCMOS 輸出的相位噪聲實(shí)際較好地限定在由變壓器決定的 900-MHz 偏移頻率界限以內(nèi)。 表 6 1.27-ps 時(shí)鐘抖動(dòng)的 SNR 結(jié)果
為了證明未濾波時(shí)鐘信號(hào)的相位噪聲需要積分至約兩倍采樣頻率,我們實(shí)施了如下試驗(yàn):在 CDCE72010 輸出和 ADS54RF63 時(shí)鐘輸入之間添加不同的低通濾波器。 需要注意的是,與先前試驗(yàn)中的帶通濾波器一樣,3X 時(shí)鐘頻率以下帶寬的低通濾波器降低了時(shí)鐘信號(hào)的轉(zhuǎn)換速率。低通濾波器消除了會(huì)產(chǎn)生更快速時(shí)鐘信號(hào)升時(shí)間和轉(zhuǎn)換速率的高階諧波,從而增加了 ADC 的孔徑抖動(dòng)。正因如此,我們將前面試驗(yàn)的相同低噪聲 RF 放大器添加到時(shí)鐘通路,并且利用可變衰減器讓轉(zhuǎn)換速率匹配信號(hào)生成器(參見圖 17)。 將不同轉(zhuǎn)角頻率的低通濾波器用于 ADS54RF63 的采樣時(shí)鐘(如圖 18 所示),得到了一些如表 7 所列有趣值。該試驗(yàn)結(jié)果表明,LVCMOS 輸出對(duì)時(shí)鐘抖動(dòng)的相位噪聲影響被限制在約 200 到 250 MHz,其相當(dāng)于 122.88-MHz 時(shí)鐘信號(hào)的 80-MHz 到 130-MHz 偏移頻率,并約為 2x 采樣頻率。因此,將寬帶相位噪聲擴(kuò)至 123-MHz 偏移頻率,會(huì)產(chǎn)生 ~445 fs 的時(shí)鐘抖動(dòng),如圖 19 所示。理想情況下,積分下限應(yīng)該位于 500 Hz 處(原因是選擇的 131000點(diǎn)FFT);但是,500-Hz 到 1 kMz 偏移頻率的抖動(dòng)貢獻(xiàn)值極其低,因此為了簡(jiǎn)單起見其在本測(cè)量中被忽略。 表 7 ADS54RF63 的測(cè)得 SNR
利用調(diào)節(jié)后的相位噪聲曲線圖,計(jì)算得抖動(dòng)較好地匹配了 SNR 測(cè)量結(jié)果,其在 ADS54RF63 和 ADS5483 的 10 到 30 fs 范圍內(nèi)(參見表 8)。考慮到在第三諧波周圍可能存在相位噪聲的較小時(shí)鐘抖動(dòng)影響,該計(jì)算得 SNR 只是一種非常接近的估算結(jié)果。 表 8 445-fs 時(shí)鐘抖動(dòng)的 SNR 結(jié)果
表 9 濾波后及未濾波時(shí)鐘的測(cè)得SNR
結(jié)論 本文介紹了使用某個(gè)濾波或未濾波時(shí)鐘源時(shí),如何正確地估算數(shù)據(jù)轉(zhuǎn)換器的 SNR。表 9 概括了得到的結(jié)果。盡管時(shí)鐘輸入的帶通濾波器對(duì)于最小化時(shí)鐘抖動(dòng)是必要的,但實(shí)驗(yàn)表明它會(huì)降低時(shí)鐘轉(zhuǎn)換速率,并使 ADC 的孔徑抖動(dòng)降級(jí)。因此,最佳的時(shí)鐘解決方案應(yīng)包括一個(gè)限制相噪影響的帶通濾波器,以及一定的時(shí)鐘振幅放大和轉(zhuǎn)換速率,目的是最小化 ADC 的孔徑抖動(dòng)。 第3 部分 介紹一些如何提高現(xiàn)有時(shí)鐘解決方案性能的實(shí)用實(shí)施方法(待續(xù))。 |